Lossless




Lossless data compression algorithms usually exploit statistical redundancy to represent data without losing any information, so that the process is reversible. Lossless compression is possible because most real-world data exhibits statistical redundancy. For example, an image may have areas of color that do not change over several pixels; instead of coding "red pixel, red pixel, ..." the data may be encoded as "279 red pixels". This is a basic example of run-length encoding; there are many schemes to reduce file size by eliminating redundancy.

The Lempel–Ziv (LZ) compression methods are among the most popular algorithms for lossless storage. DEFLATE is a variation on LZ optimized for decompression speed and compression ratio, but compression can be slow. In the mid-1980s, following work by Terry Welch, the Lempel–Ziv–Welch (LZW) algorithm rapidly became the method of choice for most general-purpose compression systems. LZW is used in GIF images, programs such as PKZIP, and hardware devices such as modems. LZ methods use a table-based compression model where table entries are substituted for repeated strings of data. For most LZ methods, this table is generated dynamically from earlier data in the input. The table itself is often Huffman encoded. Grammar-based codes like this can compress highly repetitive input extremely effectively, for instance, a biological data collection of the same or closely related species, a huge versioned document collection, internet archival, etc. The basic task of grammar-based codes is constructing a context-free grammar deriving a single string. Other practical grammar compression algorithms include Sequitur and Re-Pair.

The strongest modern lossless compressors use probabilistic models, such as prediction by partial matching. The Burrows–Wheeler transform can also be viewed as an indirect form of statistical modelling. In a further refinement of the direct use of probabilistic modelling, statistical estimates can be coupled to an algorithm called arithmetic coding. Arithmetic coding is a more modern coding technique that uses the mathematical calculations of a finite-state machine to produce a string of encoded bits from a series of input data symbols. It can achieve superior compression compared to other techniques such as the better-known Huffman algorithm. It uses an internal memory state to avoid the need to perform a one-to-one mapping of individual input symbols to distinct representations that use an integer number of bits, and it clears out the internal memory only after encoding the entire string of data symbols. Arithmetic coding applies especially well to adaptive data compression tasks where the statistics vary and are context-dependent, as it can be easily coupled with an adaptive model of the probability distribution of the input data. An early example of the use of arithmetic coding was in an optional (but not widely used) feature of the JPEG image coding standard. It has since been applied in various other designs including H.263, H.264/MPEG-4 AVC and HEVC for video coding.

Comments

Popular posts from this blog

Theory

Uses